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Abstract

Biplot diagrams are traditionally used for rock discrimination by means of utilizing geochemical data from samples. However,
this approach has limitations when facing a high number of variables. Machine learning has been proposed as an alternative to
analyze multivariate data for more than 70 years. However, the application of machine learning by geoscientists is still complicated
since there are no tools that propose a pipeline that can be followed from preparing the data to evaluating the models. Automated
machine learning aims to face this issue by automating the creation and evaluation of machine learning models. The contribution
of this work is twofold. First, we propose a methodology that follows a pipeline for the application of supervised and unsupervised
learning to geochemical data. Both methods were applied to a dataset of granitic rock samples from 6 blocks in the Peninsular
Ranges and the Transverse Ranges Provinces in Southern California. For supervised learning, the Decision Trees model offered
the best values to classify the samples from this region: accuracy: 87%; precision: 89%; recall: 89%; and F-score: 81%. For
unsupervised learning, 2 components were related to pressure effects, and another 2 could be related to water effects. As a second
contribution, we propose a web application that follows the proposed methodology to analyze geochemical data using automated
machine learning. It allows data preparation using techniques such as imputation and upsampling, the application of supervised
and unsupervised learning, and the evaluation of the models. All this without the need to program.

Index Terms

Automated Machine Learning, Geochemistry, Machine Learning, Methodology, Southern California, Supervised Learning,
Unsupervised Learning, Web Application
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Automated machine learning pipeline for
geochemical analysis

Oscar A. Esteban, Germán H. Alférez, Benjamin L. Clausen and Ana Martínez Ardila

School of Engineering and Technology, Montemorelos University, Mexico

I. INTRODUCTION

A. Background

The application of machine learning in geoscience has a
history of around 70 years [1]. Machine learning can

be defined as the ability of computers to recognize patterns
without being explicitly programmed. Nowadays, different
authors have proposed machine learning approaches in remote
sensing [2], rock classification and predictions [3], mineral
identification [4], and more. Nevertheless, the applicability of
machine learning has limitations because it is necessary to
have logical reasoning, programming experience, knowledge
of algebra, statistics and calculus, and so on [5]. Furthermore,
the creation of a highly efficient machine learning model
is a time-consuming process, as it involves: cleaning and
preparing the data, testing different algorithms, finding the
most optimal hyperparameters, and evaluating the models with
the appropriate metrics [6].

As a solution, automated machine learning (autoML) is a
growing trend to face the complexity of machine learning to
end users. AutoML consists of automating machine learning
processes to reduce the time to create machine learning
models. Also, it allows rapid implementation, and makes ma-
chine learning techniques more accessible without advanced
programming knowledge [7].

B. Problem statement

Although discrimination diagrams have been widely used
since 1973 by geoscientists to classify rock samples [8], they
present limitations such as: 1) leaving out important elements
of the samples, so the results may be limited; 2) the overlap
between the data when plotting; 3) they are effective only
for a specific type of rock and even then, they can produce
misclassifications; 4) discriminating the same sample with
different diagrams can give different results; 5) the samples
must meet certain requirements in their composition, even if
the diagram indicated for their type is used; and 6) some plots
are created with samples from a specific region, so their use
cannot be generalized [9], [10].

There are several free and open-source software that can
help to interpret geochemical-related data. For example, GCD-
kit1 and Igpet2 allow to upload rock samples data files and
discriminate them using many traditional diagrams. However,
these tools are not focused on machine learning.

1http://www.gcdkit.org/
2https://www.rockware.com/product/igpet/

C. Justification

Despite the growing interest in using machine learning
approaches in geoscience, it is considered a difficult skill
to learn nowadays. It is because machine learning requires
mathematical and logical skills, creativity to solve problems,
and knowledge to deploy the models. AutoML is a growing
trend to try to avoid this issue [11]. AutoML platforms such as
H2O3, DataRobot4, and Cloud AutoML5 allow the automatic
creation and evaluation of machine learning models. However,
they are not free and some may still require prior programming
knowledge.

In order to facilitate the application of machine learning
to geoscience, we propose: 1) a methodology that follows a
pipeline to perform machine learning techniques on geochem-
ical datasets, and 2) a free and accesible web application that
applies this methodology to the data entered using autoML.
As an online tool, it does not require any installation process
and can be accessed openly through a web browser.

The proposed methodology and the web application were
used to analyze a granitic rock sample dataset from Southern
California.

D. Objectives

The contribution of this work is twofold. First, we present
a methodology that follows a simple pipeline, allowing geo-
scientists to perform machine learning analysis on geochem-
ical data. The methodology consists of: data preparation and
analysis with supervised and unsupervised learning. First, the
methodology starts with data preparation using techniques
such as data imputation and upsampling. Then, supervised
learning can be used for classifying samples with 5 clas-
sification algorithms: K-Nearest Neighbors, Decision Trees,
Support Vector Machines, Logistic Regression, and Multilayer
Perceptron. Unsupervised learning can be used for finding
patterns with Principal Component Analysis (PCA) and clus-
tering. Our second contribution is a web application that
applies the proposed methodology allowing geoscientists to
analyze geochemical data with autoML. This web application
does not require programming. The methodology and the web
application were used to analyze a dataset of granitic rocks
from Southern California using supervised and unsupervised
learning.

The specific objectives of this research work are as follows:

3https://www.h2o.ai/solutions/
4https://www.datarobot.com/
5https://cloud.google.com/automl/
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• Propose a methodology that applies: 1) data preparation
techniques such as imputation and upsampling to the
data before analysis; 2) supervised learning using 5
classification algorithms: K-Nearest Neighbors, Decision
Trees, Support Vector Machines, Logistic Regression, and
Multilayer Perceptron; 3) unsupervised learning using the
PCA technique and the K-Means clustering algorithm.

• Create a web application in Python that follows the
proposed methodology to perform analysis with autoML.

• Analyze a dataset with granitic rock samples from South-
ern California with supervised and unsupervised learning
using the web application.

E. Hypothesis

The application of autoML to geochemical data can make
machine learning techniques accessible to geoscientists.

II. THEORETICAL FOUNDATION

A. Underpinnings of our approach

Our approach is based on the following concepts (see Figure
1):

Fig. 1. Underpinnings of our approach.

1) Machine learning: Machine learning is a branch of ar-
tificial intelligence that allows computers to apply dif-
ferent techniques, learning from past experience [12].
Thanks to machine learning, the computer learns without
being explicitly programmed. Machine learning involves

different areas such as computer science, engineering,
statistics, data mining, and pattern recognition. Its two
most used techniques are supervised and unsupervised
learning [13], [14]. In supervised learning, the data is
labeled. A label is a category or class to which the sample
belongs and identifies it. Multiple samples can belong
to the same class (have the same label). The algorithms
learn from the features of each sample and predict new
samples. The features are the measurable properties of the
samples. Depending on the feature values (independent
variables) it will be the class (dependent variable) to
which it belongs. In unsupervised learning, the data is
not necessarily labeled. The algorithms group the samples
into clusters to discover patterns in them.

2) Automated machine learning: In machine learning, ex-
perience is necessary to program, train, and choose
algorithms. AutoML automates these steps. Thanks to
autoML, machine learning results can be obtained with-
out having advanced technical expertise in the area of
programming [15].

3) Supervised learning: The following algorithms are the
most commonly used for classification [16]:

a) K-Nearest Neighbors: In this algorithm all available
cases are stored. New samples are classified based on
the most frequent label of its k nearest neighbors (the
cases with the data most similar to it) [17].

b) Logistic Regression: This algorithm models the prob-
ability of an outcome based on the individual features
(independent variables). The features are multiplied by
a weight and then added. This sum is put into a logit
function, and returns a result, that can be taken as a
probability estimate [18].

c) Decision Trees: This algorithm splits the data into
subsets (creating a tree) based on the most important
features that make the set distinct. It has decision
blocks and terminating blocks. In decision blocks,
there are two alternatives, depending on whether the
condition is true or false. They can lead to another
decision block or a terminating block. In a terminating
block some conclusion has already been reached.
Each block has a measure called entropy. Entropy
measures the disorder or uncertainty in a group of
samples. The higher the entropy, the messier the data
is. The Decision Trees algorithm tries to decrease this
measure as each block progresses. When a conclusion
is reached (in a terminating block), the entropy is 0
[19].

d) Support Vector Machines: In this algorithm, the data is
plotted in a n-dimensional space (number of features)
and a decision boundary (or hyperplane) split it into
classes. The further the plotted data points are from the
decision boundary, the more confident the algorithm
is about the prediction. The data points closest to the
hyperplane are called support vectors [20].

e) Multilayer Perceptron: It is the most common artifi-
cial neural network (ANN). It has 2 layers directly
connected to the environment (input layer and output
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layer). The intermediate layers between these two
are called hidden layers. Each layer contains neurons
connected to the next layer.
The signal transmitted by neurons follows a single
direction (from the input layer to the output layer)
without forming loops. This structure is called feed
forward. It also uses an algorithm called backpropa-
gation to minimize errors between the model outputs
and the expected outputs [21].

4) Unsupervised learning: Data reduction and clustering are
commonly used together in unsupervised learning to
improve accuracy by reducing the dimensions of the data
[22]. In this research work, the following 2 unsupervised
learning methods are used:

a) PCA: It is a technique used to reduce the dimension-
ality of the data while losing as little information as
possible. The dataset is transformed to a coordinate
system. A first axis is chosen in the direction of the
most variance in the data. A second axis is chosen
orthogonal to the first axis and with the largest variance
that it can. This process is repeated until all the data is
covered on the generated principal components (PCs)
[23].

b) K-Means: It is an algorithm to form clusters with
similar characteristics. The center of each cluster is
called centroid, and it is the mean distance of the values
in each cluster. The K-Means algorithm finds k unique
clusters and each sample is assigned to the cluster with
the closest centroid [24].

5) Web Application: A web application is any tool that is
hosted on a web server and which can be accessed via a
web browser. Its functions can be any type and be very
simple to very complex. Because it is hosted on a server,
it is not necessary to install the application on a computer.
Rather, it interacts with the data from the web, creating a
client-server environment. Any application used to enter
the information is called client. The server can be any
hardware or software that uses different protocols to
respond to client requests.

B. Related Work

Several authors have proposed the application of machine
learning techniques to solve problems in geochemistry. Table
1 summarizes these research works.

1) Supervised learning: In the following research works,
the authors compare several supervised learning approaches
to create optimal classifiers and predict new samples.

In [25], the authors proposed an approach with Multinomial
Logistic Regression to discriminate the source rock of detrital
monazites. They used 16 elements (La, Cr, Pr, Nd, etc.)
from samples of detrital monazites from African rivers. All
possible combinations were created using the 16 elements
(65,535 different combinations) to obtain the models with the
best discrimination. Accuracies by number of elements were
compared and the results showed that the highest accuracy
(97%) is obtained with 8 to 10 elements.

In [26], the authors applied 3 classification algorithms
(Random Forest, Gradient Boosted Machine, and Deep Neural
Network) to predict altered and non-altered lithotypes. They
used a dataset with geophysical log data from 1,230 coal
samples taken from 263 boreholes from the Leichhardt Seam
of the Bowen Basin in Eastern Australia. The dataset was
randomly split into an 80% training set and 20% testing set.
The Random Forest model performed the best with average
results of: 99% precision, 99% recall, and 99% F-score for
the training set; and 97% precision, 93% recall, and 95% F-
score for the testing set. Only 11 classifications out of 1,230
samples were wrong.

In [27], the authors compared and discarded different ap-
proaches (Discriminant Analysis, Logistic Regression Anal-
ysis, Decision Trees, etc.) to develop an accurate protolith
classifier. A dataset was created and normalized extracting 9
major elements (SiO2, TiO2, Al2O3, MgO, etc.) from 533,360
samples: 497,401 igneous samples and 35,959 sedimentary
samples. The samples were taken from a global dataset of
rock major elements. The results showed that the best classifier
was an Ensemble Trees model (RUSboost) with an accuracy
of 95% true igneous and 85% true sedimentary.

In [28], the authors compared 3 classification algorithms
(Support Vector Machines, Random Forest, and Sparse Multi-
nomial Regression) for the discrimination of volcanic rocks
according to 8 tectonical settings. The dataset was obtained
from 2 global geochemical databases: PetDB and GEOROC. It
was composed of 24 geochemical data and 5 isotopic ratios (29
features) and contained 2,074 samples. The results showed that
the 3 methods presented an accuracy higher than 83% in most
of the classes. Although the accuracy of Sparse Multinomial
Regression was the lowest, it was the most useful method for
generating geochemical signatures that were easy to interpret
and analyze.

In [29], the authors used Support Vector Machines to
classify rock samples according to 8 different tectonical set-
tings. The dataset was composed of major elements, trace
elements, and isotopes, from 3,095 samples. They classified
the samples using major elements, trace elements and isotopes
separately, and the combination of all (4 experiments total).
The results showed that the combination of the major elements,
trace elements and isotopic data offers the highest accuracy
(93%) than separately: 79% for major elements, 87% for trace
elements, and 79% for isotopes.

2) Unsupervised learning: In the following research works,
unsupervised learning was used to find patterns in geochem-
istry data. They also show the relationship between data
reduction and clustering.

In [30], the authors applied a clustering method based
on a hierarchy to interpret geochemical data from the soil
of Colorado, USA. The dataset was cleaned based on the
concentration percentage of the elements, and PCA. The final
dataset contained 959 samples with 22 PCs. The results of the
hierarchy method were 2 clusters, each one with elements in
common. Cluster 1 contained elements commonly enriched in
shales and other fine-grained marine sedimentary rocks. Clus-
ter 2 contained elements commonly associated with potassium
feldspars or felsic rocks. The plotted results were consistent
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TABLE I
RESEARCH WORKS THAT APPLY MACHINE LEARNING IN THE AREA OF GEOSCIENCE

Authors Year Features (independent variables) Classes (dependent variables) ML Approach

Itano, K.; Ueki, K.;
Iizuka, T. & Kuwatani, T.

[25]

2020 Detrital monazite elements (La, Ce, Pr,
Nd, Sm, Eu, etc.)

Source rock types
(garnet-free, garnet-bearing,

or granitic rocks)

Multinomial Logistic Regression

Maxwell, K.; Rajabi, M.
& Esterle, J. [26]

2019 Geophysical log data Lithotypes (altered or
non-altered)

Random Forest, Gradient Boosted
Machine, and Deep Neural

Network

Hasterok, D.; Gard, M.;
Bishop, C. & Kelsey, D.

[27]

2019 Rock major elements (SiO2, TiO2, Al2O3,
MgO, etc.)

Protoliths (igneous or
sedimentary)

K-Nearest Neighbors, Logistic
Regression, Decision Trees, etc.

Ueki, K.; Hino, H. &
Kuwatani, T. [28]

2018 Geochemical data (SiO2, TiO2, Fe2O, etc.)
and isotopic ratios (206Pb/204Pb,

207Pb/204Pb, etc.)

Tectonical settings
(continental arc, continental

flood, island arc, etc.)

Support Vector Machines,
Random Forest, and Sparse

Multinomial Regression

Petrelli, M. & Perugini,
D. [29]

2016 Major elements (SiO2, TiO2, Al2O3, etc.),
trace elements (Sr, Ba, Rb, Zr, etc.), and
isotopes (206Pb/204Pb, 207Pb/204Pb, etc.)

Tectonical settings
(continental arc, island arc,

intra-oceanic arc, etc.)

Support Vector Machines

Ellefsen, K. J. & Smith,
D. B. [30]

2016 Geochemical data (As, Cd, Sb, S, K, Ba,
Th, Na, etc.)

No (clustering) Hierarchical Clustering

Jiang, Y.; Guo, H.; Jia,
Y.; Cao, Y. & Hu, C. [31]

2015 Geochemical data (Ca, Cl, Na, NO3, pH,
etc.)

No (clustering) PCA and Hierarchical Cluster
Analysis

Alférez, G. H.;
Rodriguez, J.; Clausen,
B. & Pompe, L. [32]

2015 Geochemical data (SiO2, Sri, Gd/Yb, and
K2O/SiO2)

No (clustering) K-Means

with the map of geological units in the area.
In [31], the authors applied PCA and Hierarchical Cluster

Analysis (HCA) to study the geochemical processes that
control the presence of As in groundwater in the Hetao basin,
Mongolia. 90 groundwater samples with 22 geochemical pa-
rameters (Ca, Cl, Na, NO3, pH, etc.) were collected from the
area. PCA was applied to the samples and they identified 4
major PCs that explain 78.2% variance of the original data.
The components were the input for the HCA method. The
results showed 3 clusters. In Cluster 1, high As concentrations
correspond to high P concentrations in flat plain. In Cluster
2, samples are affected by lithological and redox factors.
In Cluster 3, low As concentrations correspond to low P
concentrations in alluvial fans.

In [32], we compared PCA and Geographic Information
Systems (GIS) techniques with the K-Means clustering al-
gorithm. We used geochemical data from 800 rock samples
from an area of Southern California. The approaches were
compared in terms of 4 geochemical factors: SiO2, Sri, Gd/Yb,
and K2O/SiO2. The results showed that the K-Means algorithm
gives results very similar to the ones obtained with GIS and
PCA.

3) Discussion: According to the research works presented
above, supervised learning is more used than unsupervised
learning in geochemistry. In general, research works on su-
pervised learning use the following methodology: cleaning and
selecting the data, splitting the dataset, training the algorithms,
and showing the results. However, several of these research
works lack specific activities for data preparation, such as
imputation, removing null values, or sample balancing. Also,
they tend to leave out other metrics besides accuracy to
evaluate and compare the models. There are not research works

that propose a machine learning platform or an autoML tool
for geochemical analysis.

III. RESULTS

A. Methodology

The methodology proposed for applying machine learning
to geochemical data is as follows (see Figure 2). First, the
data is entered and prepared using imputation or removing null
values. Then, the learning method to be applied is chosen. For
supervised learning: 1) the class and features are selected; 2)
the user can choose to balance the data or not; 3) the dataset
is split; 4) the models generated are automatically trained
and evaluated; and 5) the best model can be used to classify
new samples. For unsupervised learning: 1) the features are
selected; 2) PCA is applied; and 3) K-Means clustering is
applied. These steps are explained as follows.

1) Data preparation: In this step, the dataset is uploaded
and prepared. The user can choose to apply imputation to
fill null values. Otherwise, the user can choose to remove
samples with null values. Specifically, the following activities
are carried out during data preparation:

1) Upload the dataset: The user uploads the dataset to the
server. Our web application is publicly available6. First,
the file must be in the comma separated values (CSV)
format. The CSV format is widely used to store raw data.
Each column must be identified with a name. Also, the
CSV dataset must only contain numeric or string data
values to avoid problems when reading special characters.
For example, there are not allowed characters like <, >, %,
^, etc. For supervised learning, samples must be labeled

6http://201.134.41.15:8889/



5

Fig. 2. Pipeline to apply machine learning to geochemical data with autoML.

by strings of characters or categorical values (integer
natural numbers). For unsupervised learning, it is not
necessary to have labeled samples.

2) Apply imputation: If the dataset has samples with missing
values, the user can decide to use imputation or not. If
the user decides not to use imputation, then the samples
with null values are removed. Otherwise, imputation is
applied. Imputation refers to filling empty spaces with
different techniques. The web application uses the Extra
(extremely randomized) Tree Regressor to perform this
technique [33]. Extra Tree Regressor is an Ensemble
Decision Tree algorithm. It can produce better results
than Decision Trees because it splits each node randomly
instead of looking for the most optimal split.

2) Supervised learning: In this step, the classification al-
gorithms are trained and evaluated. The most accurate model
is then used to classify new samples of data. The activities to
apply the supervised learning method are described as follows:

1) Select the features and the class variables: The class and
features to train the algorithms are selected. In the web
application, the class labels can be string of characters
or numeric categories, and the features must be numeric
values.

2) Balance the data: The upsampling method can be applied
to prevent the most frequent one from dominating the
algorithm. Upsampling consists of randomly duplicating
samples of the least frequent class until its quantity is the
same as the most frequent class. Also, the classes with
which the classifiers will be trained are selected.

3) Split the data: The percentage of data used for training
is selected, and the rest is used for testing. Commonly
between 70% and 80% of all data is used to train the
models and the rest is used to evaluate their performance.

4) Compare the classification models: The data is finally
entered in the classifiers for training and evaluation.
The web application uses the HPO (Hyper Parameter
Optimization) technique to find the best configuration
for each model. A hyper parameter is a defined variable
that affects the performance of the algorithm. In HPO,
several values for each hyper parameter are selected, and
the model is evaluated with the possible combinations
[34]. Then, the model with the best performance is
automatically chosen. The following metrics are used to
evaluate each model:

a) Accuracy: It represents the percentage of samples
classified correctly out of total samples. It is defined
by the following formula:

Accuracy = Correct predictions
Total predictions

b) Precision: It represents the percentage of samples cor-
rectly identified as positive (true positives) out of total
samples identified as positive (true positives + false
positives). It is defined by the following formula:

Precision = TP
TP +FP

c) Recall: It represents the percentage of samples cor-
rectly identified as positive (true positives) out of total
positive samples (true positives + false negatives). It is
defined by the following formula:

Recall = TP
TP +FN

d) F-score: It represents the harmonic mean between
precision and recall. It is defined by the following
formula:

F − score = 2 ∗ Precision ∗Recall
Precision+Recall

e) Feature importance: It is an additional metric for the
Decision Trees classifier. It represents the percentage
of how much the model performance decreases when
a feature is not available. A feature is important if
shuffling its values increases the model error.

5) Predict new samples: In this step, the samples from a new
dataset are classified. The new dataset must contain only



6

the features selected in Activity 1 (Select the features).
3) Unsupervised learning: In this step, the features of

the dataset are reduced using the PCA technique. The PCs
generated are used as input to the K-Means clustering method.
The activities to apply the unsupervised learning method are
described as follows:

1) Select the features: The features to be analyzed by PCA
and clustering are selected. The features must be con-
tinuous numerical values, not categorical. Although PCA
can be applied to discrete values, it is not recommended
because the variance is less significant in them and the
results obtained are less relevant.

2) PCA: The PCA technique is applied for data reduction. It
aims to reduce a large number of variables to one (much)
smaller number losing as little information as possible.
Each component contains the combination of the original
variables and the largest variance available in the data.
PCA reduces data noise by grouping multivariate into
fewer components.

3) K-Means clustering: The PCs that were obtained with
PCA are used as input for the K-Means clustering algo-
rithm. Clustering consists of grouping unlabeled samples
with similarities between them. The clusters help to
understand the organization of the data in a summarized
way.

B. Web application for AutoML

The Flask7 micro framework was used to create the web
application for autoML. Flask was chosen in this research
work because it is easier and faster to learn than other
frameworks as it provides tools to define routes, manage forms,
render templates, etc. while external packages can extend it
[35]. Flask has two main dependencies: Werkzeug provides
the routing, debugging, and Web Server Gateway Interface
(WSGI) subsystems; and Jinja2 provides support for the view
component. A view is the response sent by the application
for a web request and each view is associated with a specific
route.

In Flask, the operations with the data are performed by the
model components and when finished, it redirects to a view.
The view and model components of the web application were
programmed in Flask using Python. The source code and the
templates are available online8. The app.py file contains the
definition of the routes, functions and views of the web appli-
cation. The interactions between the user and the components
in the web application are as follows (see Figure 3).

First, the user enters the web application and the route of
the Index() function (see step 1 in Figure 3) is requested.
When the route matches, the function renders the index.html
template and displays it to the user (see step 2 in Figure 3).
The HTML templates contain forms where the user chooses
the operations to be applied to the entered dataset. In the
index.html template the user enters the dataset to analyze. Once
the form is submitted, the path belonging to the Add_CSV()

7https://flask.palletsprojects.com/en/1.1.x/
8https://github.com/OscarAlex/geoml

Fig. 3. Components in Flask of the web application.

function is requested (see step 3 in Figure 3). The Add_CSV()
function reads the CSV file and converts it to a dataframe
(see step 4 in Figure 3). At the end of its operations, the
function redirects to the route of the Imputation() function
and the process repeats again from step 1 until it reaches an
endpoint in the pipeline shown in Figure 2.

The underlying process followed by the web application is
shown in Figure 4. White blocks are the view functions that
render the HTML templates, which are the yellow blocks. Blue
blocks are functions that work with the data between each
view and at the end, they redirect to the next view. Each set
of white, yellow and blue blocks corresponds to an activity of
the methodology presented in the previous section.

The Data preparation step is composed of 3 view func-
tions, 3 HTML templates and 3 work functions. The
Add_CSV() function transforms the CSV file to a dataframe;
the Add_Imput() function applies imputation to the data or
removes the null values according to the user’s response; and
the Choose_Learning() function redirects to the next step,
depending on the analysis that you want to apply to the dataset.

The Supervised learning step is composed of 6 view
functions, 6 HTML templates and 6 work functions. The
Add_SupFeats() function keeps only the columns selected by
the user; the Add_Balance() function applies upsampling or
not, according to the user’s response; the Add_Split() function
splits the dataset to train and evaluate the 5 algorithms, and
chooses the most accurate one; the Add_Report() function redi-
rects to the template to enter the new dataset to be classified;
the Add_Classify() function classifies the new samples; and the
Add_Results() function downloads a CSV file with the samples
and their predicted label.

The Unsupervised learning step is composed of 3 view
functions, 3 HTML templates and 3 work functions. The
Add_UnsupFeats() function applies PCA to the columns se-
lected by the user; the Add_PCA() function groups the com-
ponents into clusters; and the Add_Results() function allows
to download the original samples and their assigned cluster in
a CSV file.

A session is used to store user information through requests.
This functionality was necessary to avoid data lost at the end
of the session. The session object creates a cookie to store the
content of the session in a temporary directory on the server.
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Fig. 4. Underlying process of the autoML web application.

The production WSGI (Web Server Gateway Interface) server
Waitress9 was used for the deployment of the web application.
WSGI is a standard used to establish how the web server
communicates with the web application.

C. Outcomes

Our approach was evaluated with a compositional dataset
from 6 fault-separated blocks in the Peninsular Ranges
Province and Transverse Ranges Province. The Peninsular
Ranges are a group of mountain ranges, stretching from South-
ern California to Southern Baja California, Mexico. North of
the Peninsular Ranges Province is the east-west Transverse
Ranges Province. Around this area, there are several faults
that allow the subdivision of the provinces: San Andreas, San
Jacinto, Elsinore, Pinto Mountain, and Banning. There are 6
structurally-bounded units or blocks bounded by these faults:
San Gabriel, San Bernardino, and Little San Bernardino from
Transverse Ranges; and San Jacinto, Perris, and Santa Ana
from Peninsular Ranges [36].

The most important geological feature of the Peninsular
Ranges Batholith (PRB) is a batholith-wide separation into
western and eastern parts based on geophysical criteria. The
older western terrain is more mafic and heterogeneous, and
plutons were generally emplaced at a shallower depth with
a shallower magma source than those in the east. The mag-
matism in these provinces records a west to east progression
of subduction transitioning from an oceanic to a continental
arc setting characterized by numerous individual plutons with
compositions ranging from gabbro to tonalite [37].

The dataset was composed using 514 granitic rock sam-
ples (quartz diorites, granodiorites, and quartz monzonites)
collected from the study area. This dataset contains 8 major
elements (SiO2, Al2O3, Fe2O3, MgO, CaO, Na2O, K2O, and

9https://docs.pylonsproject.org/projects/waitress/en/stable/

TiO2), 36 trace elements (P2O5, MnO, Sc, V, Cr, Mn, Co,
Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Mo, Cs, Ba, La, Ce, Pr, Nd,
Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Hf, Ta, W, Th, and U),
sample id, latitude, longitude, and block (as the class) from the
collected samples. Two datasets were created from the original
dataset. The first dataset was composed by 90% of the samples
per block, and the remaining 10% of the samples were used
for the second dataset. The first dataset (462 samples) was
splitted again for the training and testing of the models (80%
for training and 20% for testing). The labels of the second
dataset (52 samples) were removed and the samples were used
for prediction. Both datasets were used for supervised learning.
The original dataset (514 samples) was used for unsupervised
learning. The classes were not used for PCA and clustering.
Table 2 shows the number of samples per block for the 3
datasets.

TABLE II
SAMPLES PER CLASS OF EACH DATASET

Block Original
dataset

Training and
testing dataset

Prediction
dataset

San Bernardino 129 116 13
Perris 126 113 13

San Jacinto 99 89 10
Santa Ana 91 82 9

San Gabriel 45 41 4
Little San Bernardino 24 21 3

Total 514 462 52

For both analyzes, the samples with null values were
removed in the Data Preparation step. Figure 5 shows the
workflow of the web application. Each screen shows a form
where the user chooses the operations to perform on the
dataset. The samples datasets, the evaluation results, and the
resulting plot images of the analysis are available online10.

10https://github.com/OscarAlex/Automated-machine-learning-pipeline-for-
geochemical-analysis
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Fig. 5. Workflow of the web application.
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1) Data preparation: Data was prepared by eliminating the
rock samples with null values. The activities carried out to
prepare the data are as follows:

1) Upload the dataset: Step 1 in Figure 5 shows a screenshot
of the interface to enter the dataset. In this case, the
training dataset was uploaded to the web application.

2) Apply imputation: Step 2 in Figure 5 shows a screenshot
of the interface to apply or not apply imputation to the
dataset. In this example, imputation was not applied, so
samples with null values were removed. After removing
null values, the remaining dataset was composed of 432
samples. The remaining samples per class were as fol-
lows: San Bernardino: 112 samples; Perris: 97 samples;
San Jacinto: 89 samples; Santa Ana: 72 samples; San
Gabriel: 41 samples; Little San Bernardino: 21 samples.

3) Choose the learning method: Step 3 in Figure 5 shows a
screenshot of the interface to select the learning method to
be applied to the dataset. Supervised learning was applied
first and then unsupervised learning.

2) Supervised learning: Supervised learning was applied
to classify granitic samples according to the 6 blocks of the
Peninsular Ranges and Transverse Ranges region: San Gabriel,
San Bernardino, Little San Bernardino, San Jacinto, Perris, and
Santa Ana. The activities carried out in terms of supervised
learning were as follows:

1) Select the features and the class variables: The class
column and the feature columns were selected (see step 4
in Figure 5). The column block was selected as the class.
The major and trace elements of the samples (44 out of
48 features) were also selected. The following features
were left out: latitude, longitude, and sample id.

2) Balance the data: In this step, the data was balanced (see
step 5 in Figure 5). The class with the highest frequency
was San Bernardino with 112 samples, and the lowest,
Little San Bernardino with 21 samples. Upsampling was
applied to balance the frequency of the 6 classes. After
applying upsampling, the remaining dataset was com-
posed of 672 samples, 112 samples per class.

3) Split the data: The percentage values to split the dataset
were selected (see step 6 in Figure 5). Specifically, 80%
of the samples were selected to train the algorithms and
the remaining 20% of the samples were used evaluate the
resulting models.

4) Compare the classification models: In this step, the web
application returns the metrics of the models (see step
7 in Figure 5). The model with the best performance in
this example was the one generated with the Decision
Trees algorithm, with an accuracy of 87%. Its precision,
recall and F-score values were also good in general (see
Table 3). The classes that the model best classified were
San Gabriel and Santa Ana, both with 95% in F-score.
Contrary, San Bernardino was the class with the lowest
recall (68%) and F-score (79%). The 10 most important
features of the Decision Trees model and their values are
shown in Table 4. Ni and Sc may be the most important as
they are mafic. La, Sr, Y, and Tb are important because of
pressure effects while Cs and K2O are important because

TABLE III
REPORT FROM THE DECISION TREES MODEL

Block Precision Recall F-score
Little San Bernardino 84% 100% 91%

Perris 87% 91% 89%
San Bernardino 95% 68% 79%

San Gabriel 91% 100% 95%
San Jacinto 77% 85% 81%
Santa Ana 100% 90% 95%

TABLE IV
FEATURE IMPORTANCE OF THE DECISION TREES MODEL

Feature Importance
Ni 0.1874
Sc 0.1215
Cu 0.0977
La 0.0903
Sr 0.0633
Cs 0.0561
Y 0.0479

Fe2O3 0.0422
Tb 0.0305

K2O 0.0294

they are usually associated with magma depth source
[38].
Figure 6 shows the shortest path to reach a conclusion
in the Decision Trees model. It is explained as follows.
Each block of the tree contains: its entropy value, its
condition and the number of samples that meet it, a one-
dimensional array that indicates the score value of each
class, and the class with the highest score value. When a
new sample is introduced to be classified, it is located in
the first block. If the condition is met in the first block (Ni
<= 0.006), it goes to the decision block on the left and
the sample is classified as San Jacinto. If the condition
is met in the second block (Cu <= 0.007), it goes to
the left block and the sample is classified as Perris. If
the condition is met in the third block (Cs <= 0.001),
it goes to the left block and the sample is classified as
San Gabriel, and so on until reach a conclusion. If the
condition is false in this block, it goes to the right and
the sample is finally classified as Perris in the terminating
block.
The accuracy of the remaining models was: K-Nearest
Neighbors: 85%; Logistic Regression: 41%; Support Vec-
tor Machines: 43%; and Multilayer Perceptron: 77%.

5) Classify new samples: The testing dataset was entered to
be classified by the Decision Trees model (see step 8 in
Figure 5). The testing dataset contained the major and
trace elements selected by the user. Step 9 in Figure 5
shows the table with the features and the predicted label
for each sample. The table with the sample features and
its predicted class can be downloaded in CSV format.

3) Unsupervised learning: Unsupervised learning was ap-
plied to observe the behavior of clusters in terms of geo-
chemical elements. The activities carried out in terms of
unsupervised learning were as follows:

1) Select the features: The columns with the features were
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Fig. 6. Shortest path in the decision tree generated.

selected (see step 10 in Figure 5). The major and trace
elements of the samples (44 out of 48 features) were
selected. The following features were left out: sample id,
latitude, longitude, and block.

2) PCA: PCA was applied to reduce noise in the data
and improve the performance of the K-Means algorithm.
Step 11 in Figure 5 shows the screenshot with the table
containing the features, and the calculated component
loadings. Table 5 shows the eigenvalues, variance per-
centage, and cumulative variance percentage of the PCs
generated. The 5 first PCs were selected to explain 71.9%
of the data variance.

TABLE V
EIGENVALUES AND VARIANCE OF THE GENERATED PCS

PC Eigenvalue Variance
percentage

Cumulative variance
percentage

PC1 12.93 29.32% 29.32%
PC2 8.58 19.45% 48.77%
PC3 6.00 13.61% 62.39%
PC4 2.41 5.46% 67.85%
PC5 1.79 4.05% 71.9%
PC6 1.72 3.91% 75.81%
PC7 1.33 3.01% 78.82%
PC8 1.25 2.83% 81.65%
PC9 1.09 2.47% 84.13%

PC10 0.96 2.18% 86.31%

3) K-Means: Cluster analysis with K-Means was applied
to observe the relationship between the geochemical
elements of the samples. Step 12 in Figure 5 shows
a screenshot with the table that contains each sample
and its corresponding cluster. The table with the sample
features and its assigned cluster can be downloaded in
CSV format. According to the Elbow method, 3 was

chosen as the optimal value of k (number of clusters).
Figure 7 shows the sample clusters plotted by longitude
and latitude. The average SiO2 values are as follows:
Cluster 1 = felsic @ SiO2 average = 71%; Cluster 2
= intermediate @ SiO2 average = 65%; and Cluster 3
= mafic @ SiO2 average = 58%. However, the average
SiO2 values are not quite right to define the compositional
groups (for example mafic compositions are not usually
higher than 55% SiO2).

Fig. 7. Cluster map of the Transverse Ranges Province and the Peninsular
Ranges Province in Southern California. The samples were located according
to their measured latitude and longitude.

The clusters were generated in terms of the samples
and geochemical elements. Figure 8 shows the clusters
plotted in terms of PC1 and PC2. Positively correlated
variables were grouped together (for example: MnO, Mn,
and TiO2 are positively correlated). Negatively correlated
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variables were placed on opposite quadrants of the plot
origin (for example: SiO2 is negatively correlated to
Fe2O3). The distance between the variables from the
plot origin measures the quality of the variables on the
factor map (for example: Gd and Dy are more represented
in PC2 than in PC1, and Cu and Ni are not well
represented in both PCs). PC1 is probably related to
compatible/incompatible elements because K2O, SiO2,
and Rb were heavily represented on it.

Fig. 8. Clusters according to PC1 and PC2. For the element clusters: red
are large ionic radius, blue are small ionic radius, and green are Rare Earth
Elements (REEs).

Clusters plotted on PC2 and PC3 show the effects of
pressure (see Figure 9). Sr is positive and Y is negative
to PC3 as expected if PC3 is related to pressure. The
other Rare Earth Elements (REEs) arrange themselves in
between. PC2 does not show much dispersion. However,
the large ionic radius elements (K2O and Rb) are negative,
and the small ionic radius (MgO, Co, V, and Mn) are
positive. For the element clusters: green seems to be
heavy REEs (small ionic radius); red are light REEs (large
ionic radius); and blue are compatible elements (small
ionic radius). For the sample clusters: yellow is high in
SiO2, K2O, and Rb (felsic); purple is high in compatible
elements (mafic); and green seems to be high in REEs
(intermediate).
Clusters plotted on PC4 and PC5 could be related to water
effects (see Figure 10). Immobile Ta and Nb are positive
PC4, along with U and Th. For the element clusters: red
includes the mobile alkaline elements (Na, K, Rb, and
Cs) as well as the immobile ones (Nb and Ta). Perhaps
it also includes the elements carried during hydrothermal
alteration (Cu, Mo, and W), the radioactive elements (U,
Th, K, and Rb) and the Zr-Hf set. For the sample clusters:
seem to all center on zero, so the extent of fractionation
is not related to water effects. This needs to be studied
some more.

Fig. 9. Clusters according to PC2 and PC3. Large ionic radius (light REEs)
and small ionic radius (heavy REEs and compatible elements) are found in
element clusters. Felsic, mafic and intermediate elements are found in sample
clusters.

Fig. 10. Clusters according to PC4 and PC5. Mobile alkaline elements and
immobile elements are found in element clusters.

D. Discussion

For supervised learning, the Decision Trees algorithm ob-
tained the best average metrics results: accuracy: 87%, preci-
sion: 89%; recall: 89%; and F-score: 81%. For unsupervised
learning, 5 PCs were used to generate the clusters. The plot
with PCs 2 and 3 was found to be related to pressure effects,
while the plot with PCs 4 and 5 could be related to water
effects.

IV. CONCLUSIONS AND FUTURE WORK

This research work proposed a methodology to apply ma-
chine learning to geochemical data and an open web applica-
tion for autoML. This tool will allow geoscientists to load
geochemical datasets and perform analysis with supervised
and unsupervised learning. A dataset composed by granitic
rock samples from Southern California was analyzed with both
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learning methods using the web application. For supervised
learning, the Decision Trees model offered the best results. For
unsupervised learning, 2 plots were found that could be related
to water and pressure effects. As future work, the proposed
pipeline will be extended to apply other techniques to prepare
the data, such as downsampling. Also, the web application will
incorporate new functions, such as: saving the models created
by users to be used more than once, and allowing the tuning
of more parameters for supervised and unsupervised learning
methods.
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