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Glaucoma is the leading cause of irreversible blindness worldwide. It is estimated that over 60
million people around the world have this disease, with only part of them knowing they have
it. Timely and early diagnosis is vital to delay/prevent patient blindness. Deep learning (DL)
could be a tool for ophthalmologists to give a more informed and objective diagnosis. However,
there is a lack of studies that apply DL for glaucoma detection to Latino population. Our con-
tribution is to compare the effectiveness of MobileNet and Inception V3 models to detect cases
of glaucoma in Latino patients. To this end, transfer learning was used to retrain previously
trained models with images of the retinal nerve fibre layer Thickness Map of Mexican patients,
obtained with Optical Coherence Tomography, from a clinic in the northern part of Mexico.
Specifically, the Inception V3 model showed slight better average results than the MobileNet
model in the case of classifying left eye images. In average, the evaluation results for right eye
images were the same for both models. The evaluation results of the MobileNet model for the
left eye are: accuracy: 86 %, precision: 87 %, recall: 87 %, and F1 score: 87 %. The evaluation
results of the MobileNet model for the right eye are: accuracy: 90 %, precision: 90 %, recall:
90 %, and F1 score: 90 %. The evaluation results of the Inception V3 model for the left eye are:
accuracy: 90 %, precision: 90 %, recall: 90 %, and F1 score: 90 %. The evaluation results of the
Inception V3 model for the right eye are: accuracy: 90 %, precision: 90 %, recall: 90 %, and F1
score: 90 %.
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Introduction
A. Background

Glaucoma is a serious long-term health care problem’.
According to the Glaucoma Research Foundation 2, over 60
million people worldwide have glaucoma. The most impor-
tant consequence that may occur as a result of this condition
is visual impairment, which can lead to blindness>. Hence the
ability to detect structural loss is fundamental in the diag-
nosis and management of glaucoma*. Specialists diagnose
glaucoma based on Optical Coherence Tomography (OCT)
or other studies, but even among them, the diagnosis could
differ. Deep Learning (DL) has been used as a tool to de-
tect glaucoma cases since a few years back. However, as far
as we know, there are not research works that compare the
effectiveness of DL topologies in detecting glaucoma in La-
tino population. This research work is a continuation of our
previous work®>. In®, we trained a model using the Inception
V3 algorithm with fundus images of glaucomatous and non-
glaucomatous eyes of Latino patients, and obtained an accu-
racy of 99.7 %.

B. Problem Statement

Glaucoma is one of the most common causes of global
irreversible blindness. Diagnosis tends to be based on sub-
jective information, and if wrongly diagnosed, the patient
could lose sight. According to®, by the year 2040 the number
of people with glaucoma worldwide will increase to 111.8
million. Most of the studies and research works on glauco-
ma detection using DL are based and applied on Caucasian,
Asian, or mixed population’-#%10. However, there is a lack of
studies on Latino population. Image recognition algorithms
could be used as a breakthrough approach to help ophthal-
mologists to diagnose glaucoma in Latino patients.

C. Justification

Glaucoma is the leading cause of irreversible blindness
worldwide. Blindness from glaucoma can often be preven-
ted with early treatment. But because it may be asympto-
matic until a relatively late stage, diagnosis is frequently
delayed!H!2113,
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OCT is an imaging technology commonly used in the eva-
luation of damage caused by glaucoma. Retinal nerve fibre
layer (RNFL) remains the dominant parameter for glaucoma
diagnosis and detection of progression*. Nevertheless, cu-
rrent tests for glaucoma detection do not provide an automa-
tic diagnosis. They return numeric and graphical information
that the ophthalmologist uses for giving a diagnosis. Howe-
ver, these diagnoses remain subjective. According to'#, the
increasing use of Artificial Intelligence (Al) in health could
be used for diagnosing glaucoma objectively. It can cause a
breakthrough and a major role in screening, diagnosis, and
surveillance of glaucoma. Although there is previous work
on automatic detection of glaucoma via DL7315 there is a
need for comparing the effectiveness of different DL topolo-
gies for glaucoma detection. Moreover, most of the research
works on glaucoma detection with DL use databases of eye
images of Caucasian, Asian, or mixed population’#1°, Ho-
wever, there is a lack of studies in Latino population.

D. Objectives

Our main objective is to detect glaucoma in the Latino po-
pulation of patients located at the northern part of Mexico by
means of using images of the OCT’s RNFL Thickness Map
of both eyes to retrain and evaluate MobileNet and Inception
V3 models. We achieved this objective with the following
specific sub-objectives:

= Obtain images from both eyes from 165 Mexican pa-
tients. These patients were screened at the Instituto de
la Visién, a private clinic located in Montemorelos,
NL, Mexico.

= Use transfer learning to retrain two DL models
with the obtained dataset by means of Mobile-
Net and Inception V3 topologies. For training, we
used 50 images for each class:glaucomatousandnon-
glaucomatous(forbothright and left eyes). In total, 200
images were used for training. Retraining was carried
out to reduce training time and computing resources.
The MobileNet and Inception V3 initial models had
been trained with ImageNetl.

= Validate the MobileNet and Inception V3 models in
terms of precision, recall, and F1 score.

= Test the effectiveness of the MobileNet and Inception
V3 models with 15 images for each class: glaucoma-
tous and non-glaucomatous (for both right and left
eyes), with a total of 60 images.

E. Hypothesis

By using DL, it is possible to detect glaucoma in La-
tino population by automatically analyzing RNFL Thickness
Map images given by OCT studies.

THEORETICAL FOUNDATION

A. Underpinnings of our Approach Our approach is based
on the following concepts (see Fig. 1).
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Fig. 1. Underpinnings of our approach

1) Glaucoma: Glaucoma is a term used to describe a group
of disorders that have in common progressive degeneration
of the optic nerve causing visual compromise and eventually
blindness. Collectively, glaucoma is the leading cause of
irreversible blindness worldwide.'! The pathophysiology of
glaucoma is uncertain with the different theories (mechani-
cal and vascular)16’17 but the damage is the same, death of
ganglion cells, with reduction in the RNFL that results in da-
mage to the optic nerve head (ONH) with consequent visual
limitation that can lead to blindness. As the balance between
the production of aqueous humor in the eye and its draina-
ge is lost, intraocular pressure (eyetone) mayrise, which is
the most important risk factor for damage to the optic nerve
susceptible to glaucoma and may cause vision loss.

2) Retinal Nerve Fibre Layer: The RNFL consists of gan-
glion cell axons. Their course runs in parallel to the retinal
surface; the fibers proceed to the optic disc, turn at a right
angle, and exit the eye through the lamina cribrosa as the op-
tic nerve. The fibers generally are unmyelinated within the
retina. The RNFL is thickest at the margins of the optic disc,
where all the fibers accumulate. The group of fibers that ra-
diate to the disc from the macular area is called the papillo-
macular bundle. This important grouping of fibers carries the
information that determines visual acuity'8. The evaluation
of the RNFL is one of the most important clinical exami-
nations for diagnosing glaucoma because it becomes thinner
when there is glaucoma.'®-?

3) Optical Coherence Tomography: OCT is a noncon-
tact, noninvasive imaging technology that uses light to crea-
te highresolution, cross-sectional tomographic images of the
retina and the ONH.?! The OCT measures total retinal thick-
ness, RNFL thickness, and ONH morphology.?> The RNFL
can be assessed more precisely with OCT, which directly
measures the thickness of the RNFL.?°

4) DeepLearning: DLisaclassofMachineLearning(ML)
technique that exploits several layers of non-linear infor-
mation processing for supervised or unsupervised feature
extraction and transformation, and for pattern analysis and



classification.?® It teaches computers to do what comes natu-
rally to humans: learn by example. In DL, a computer model
learns to perform classification tasks directly from images,
text, or sound. DL models can achieve state-of-the-art accu-
racy, sometimes exceeding human-level performance.?*

5) Convolutional Neural Network: A Convolutional Neu-
ral Network (CNN), is a class of artificial neural networks
that specializes in processing data that has a grid-like to-
pology, such as an image. A CNN typically has three la-
yers: a convolutional layer, pooling layer, and fully connec-
ted layer?:

1) The convolution layer is the core building block of the
CNN. It carries the main portion of the network’s compu-
tational load. This layer performs a dot product between two
matrices, where one matrix is the set of learnable parame-
ters otherwise known as a kernel, and the other matrix is the
restricted portion of the receptive field.

2) The pooling layer replaces the output of the network
at certain locations by deriving a summary statistic of the
nearby outputs. This helps in reducing the spatial size of
the representation, which decreases the required amount of
computation and weights.

3) In the fully connected layer, the pooling operation is
processed on every slice of the representation individually.
Neurons in this layer have full connectivity with all neurons
in the preceding and succeeding layer as seen in regular fully
convolutional neural network. This is why it can be compu-
ted as usual by a matrix multiplication followed by abias ef-
fect. The fully connected layer helps map the representation
between the input and the output.

6) MobileNet: MobileNet is a family of mobile-first com-
puter vision models for TensorFlow, based on depthwise se-
parable convolutions. MobileNet algorithms are designed to
effectively maximize accuracy while being mindful of the
restricted resources in an on-device or embedded applica-
tion. Specifically, MobileNets are small, low-latency, low-
power models parameterized to meet the resource constraints
of a variety of cases. They can be built upon for classifi-
cation, detection, embeddings, and segmentation similar to
how other popular large scale models, such as Inception, are
used. All layers are followed by a batchnorm and ReLU non-
linearity with the exception of the final fully connected layer
which has no nonlinearity and feeds into a softmax layer for
classification®®2”. In?’, the creators of MobileNet present the
MobileNet architecture in detail.

7) Inception V3: Inception V3 is an image recognition
model that has obtained more than 78 % accuracy on the Ima-
geNet dataset. This model was developed based on.?® The
model is 42 layers deep and is made up of symmetric and
asymmetric building blocks, including convolutions, avera-
ge pooling, max pooling, concats, dropouts, and fully con-
nected layers. Batchnorm is used extensively throughout the
model and applied to activation inputs. Loss is computed via

softmax.28%

8) TensorFlow: TensorFlow2 was developed in 2011 by
the Google Brain Team. It is an open-source software library
for numerical computation that uses data flow graphs. Ten-
sorFlow enables ML practitioners to do data-intensive com-
puting with robust implementations of widely used DL al-
gorithms. TensorFlow offers a very flexible architecture that
enables to deploy computation to one or more CPUs or GPUs
in a desktop, server, or mobile device with a single APL3! It
has a comprehensive, flexible ecosystem of tools, libraries
and community resources that allows researchers and deve-
lopers to push the state-of-the-art in ML, and easily build and
deploy ML powered applications.’!

9) Transfer Learning: Transfer learning is a technique that
reduces the time and computing resources used when trai-
ning from scratch. Its main objective is to take advantage of
data from a model that has already been trained on a related
task and extract information that may be useful, and reuse
it in a new model. Most often when doing transfer learning,
the weights of the original model are not adjusted. Instead the
final layer is removed and a new (often fairly shallow) model
is trained on top of the output of the truncated model.3>33

B. Related Work

Tham et al.% studied the prevalence of glaucoma world-
wide, and the projections of the disease for the years 2020
and 2040. They estimated that by the year 2020, the La-
tin American region will have the third largest number of
persons affected by glaucoma, preceded by the Asian and
African regions. In 34, the authors studied the prevalence of
glaucoma in a population-based sample of Hispanic adults
older than 40 years. The ocular examinations included visual
acuity testing, applanation tonometry, gonioscopy, an optic
disc evaluation, and a threshold visual field test; for open-
angle glaucoma and angle-closure glaucoma. The study was
realized in 72 % of the eligible persons, with a prevalence
of 1.97 % of OAG (4,774 participants). They found that the
prevalence of OAG in Hispanics was intermediate between
reported values for Caucasians and African Americans and
that the frequency of glaucoma increases more quickly with
increasing age than in other ethnic groups.

Glaucoma can be detected through OCT using the RNFL
thickness.'* According to a study presented by*, the RNFL
thickness proved to be better than any other ONH parame-
ter for discriminating between glaucomatous and nonglau-
comatous eyes. In®>, the authors used the RNFL thickness
deviation map for glaucoma detection. They evaluated its
diagnostic performance and compared its sensitivity and spe-
cificity for glaucoma detection with circumpapillary RNFL
measurement derived from the standard 3.46 mm diame-
ter circle scan. They imaged one eye from each individual
(102 normal subjects and 121 glaucoma patients) with Cirrus
HDOCT and Stratus OCT. By analyzing the RNFL thickness
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deviation map, the diagnostic sensitivity for glaucoma detec-
tion was improved, compared with conventional circumpa-
pillary RNFL measurement. The reason behind it is that the
RNFL thickness deviation map provides additional spatial
and morphologic information of RNFL damage.

ML, in general, has proven to be a great tool for glau-
coma detection.’®37-3:3% Among ML approaches, DL has
been increasingly used in the last years for glaucoma de-
tection as shown in Table 1. For instance, in our previous
work>, we used Inception V3 for glaucoma detection in La-
tino population. Specifically, 38 fundus images were used
to retrain the model, 25 of confirmed glaucoma and 19 of
non-glaucomatous eyes. After retraining, the model was tes-
ted in terms of accuracy with 6 fundus images, 3 healthy
and 3 glaucomatous. The model showed a 99.7 % accuracy.
Unlike®, which is focused only on one DL algorithm and on
fundus images, this research work compares two different
DL algorithms and uses OCT images.

In*, the authors trained a CNN with a pretrai-
ning dataset (consisting of 4,316 OCT images), and
then retrained it with an independent training dataset.
The input features were 8x8 grid macular RNFL thick-
ness and ganglion cell complex layerthicknessfromSD-
OCT.TheareaundertheROCcurve(AUC) with the DL model
was 93.7 %.

Li et al.” developed a DL system for the classification of
glaucomatous optic neuropathy for automated classification
of color fundus images. They used a 22-layer deep convo-
lutional neural network with 11 inception modules and tes-
ted its efficacy with 48,116 fundus images obtained by ran-
dom sampling from the dataset LabelMe. This dataset was
collected from almost exclusively Chinese population.*! A
total of 8,371 images were excluded from the training and
validation dataset because they did not meet the selection
criteria. Among the remaining 39,745 images, 8,000 were
used for the validation set and 31,745 for the training set. The
DL algorithm showed an AUC of 98.6 %, Accuracy (ACC)
of 92.9 %, Sensitivity (SE) of 95.6 %, and Specificity (SP)
of 92.0 % for classification of referable glaucomatous optic
neuropathy.

In', the authors used a Deep Residual Learning algo-
rithm, also known as a ResNet, for glaucoma detection in
Japanese population. They trained a model with a training
dataset of 1,364 eye images with OAG and 1,768 eye images
of normative subjects. The authors used independent testing
datasets to validate the diagnostic performance of the model.
The AUC of the ResNet model was 96.5 % with all images.
Three residents in Ophthalmology also confirmed the pre-
sence of glaucoma in the training dataset. The AUC values
obtained with the ResNet model tended to be significantly
larger than those from the residents in ophthalmology.

In’, the author used advanced DL algorithms to diagno-
se glaucoma based on retinal fundus images without using

TABLE I

SPECIFICITY (SP), PRECISION (PRC), ACCURACY (ACC))

RESEARCH WORKS DONE ON DL FOR GLAUCOMA DETECTION (AREA UNDER THE ROC CURVE (AUC), SENSITIVITY (SE

Chen et al. [8] 2015 Fundus Deep CNN

650 (ORIGA) | 1676 (SCES) 88.7%

(SCES)

Author Year | Fundus/OCT | Train images Test images DL algorithm AUC SE SP PE
Asaoka et al. [40] | 2019 OCT 4316 Independent CNN (transfer learning) 93.7% - - -
Espinoza et al. [5] | 2018 Fundus 38 6 Inception V3 - - - -

Lietal. [9] 2018 Fundus 31,745 8,000 Deep CNN 98.6% | 95.6% 92% —
Shibata et al. [10] | 2018 Fundus 3,132 110 ResNet 96.5 % - - -
Abbas [7] 2017 | Fundus 1,200 Deep Belief Network (DBN): 84.50% | 98.01% | 84
Glaucoma-Deep System
83.1%
99 (ORIGA), | 551 (ORIGA), (ORIGA)

segmentated-based hand-crafted features. He developed the
Glaucoma-Deep system, using a CNN unsupervised architec

ture to extract features from raw pixel intensities. The
author also used a Deep Belief Network model to select the
most discriminative deep features based on the training data-
base, and a softmax linear classifier to differentiate between
glaucoma and non-glaucoma. The Glaucoma-Deep system
was tested on 1,200 retinal images, obtained from four da-
tasets. The results were the following: SE of 84.50 %, SP of
98.01 %, ACC of 99 %, and PRC of 84 %.

Chen et al.} present a DL model based on deep CNN that
is able to detect glaucoma in Asian population based on digi-
tal fundus images. The authors present a six-layer network,
four convolutional and two fully connected layers. They trai-
ned their model with 99 images from the ORIGA dataset,
tested it with the remaining 551 images of the same dataset,
and obtained an AUC value of 83.1 %. They did a second
training for the SCES dataset, using the whole 650 images
from the ORIGA dataset for training, and tested this model
with the 1,676 images from the SCES dataset. They obtained
an AUC value of 88.7 %.

DL has been used to detect glaucoma obtaining good re-
sults. However, there is a lack of research work focused on
Latino population. Moreover, although there is one research
work!> done on comparing different DL topologies for glau-
coma detection, it is not based on Latino population.

Results
Methodology

The IBM Foundational Methodology for Data Science is
focused on data science projects, hence the decision to follow
this methodology on this research work. This methodology
consists of ten stages that form an iterative process for using
data to uncover insights.*? These stages are described in the
context of this research work.

1) Problem Understanding: The problem was understood
as stated in Section I.B.

2) Analytic Approach: Two DL image recognition topolo-
gies, MobileNet and Inception V3, were chosen as the analy-
tical approaches to classify the OCT images in two classes:
glaucomatous and non-glaucomatous.

Inception V3 was chosen because of its high accuracy and
relatively small size compared to other deep neural network



models.*> MobileNet was chosen based on the evaluation re-
sults presented in®’, where its creators present and compare
MobileNet to other topologies, such as VGG16 and Google-
Net. MobileNet showed a similar accuracy to other state-of-
the-art topologies while being considerably smaller in size
and less compute intensive. Moreover, transfer learning can
be applied to MobileNet and Inception V3, which can reduce
the time and computing resources used when training from
scratch.

3) Data Requirements: The required data consist of ima-
ges of the RNFL Thickness Map that is part of the OCT scan
result of glaucomatous eyes and non-glaucomatous eyes.
Images must be in RGB, with an input size of 224 x 224
pixels for MobileNet and 299 x 299 pixels for Inception V3.

4) Data Collection: The OCT scan files were collected
from a Zeiss OCT machine at the Instituto de la Visién
in PDF format, and classified and organized in folders by
an expert into two classes:1) glaucomatous, and 2) non-
glaucomatous. This classification was carried out for both
eyes. With these images, we got a dataset of 333 files in total.

5) Data Understanding: At this point, the dataset was con-
formed by PDF files as shown in Figure 2. Each one of these
files contains the following structure: the top part shows the
information of the patient and the exam. Then, there are five
images corresponding to information about the right eye, fi-
ve images corresponding to information about the left eye,
and in between, a table and four charts comparing them.
Specifically, for both eyes, Section A in Figure 2 shows the
RNFL Thickness Map; Section B shows the RNFL Deviation
Map; Section C and D show the Extracted Horizontal Tomo-
gram and the Extracted Vertical Tomogram, respectively; and
Section E shows the RNFL Circular Tomogram. The table
in Section F displays measures corresponding to both eyes.
Section G shows the Neuro-Retinal Rim Thickness, Section
H shows the RNFL Thickness, Section I shows the RNFL
Quadrants, and Section J shows the RNFL Clock Hours.

6) Data Preparation: Since this research work is focused
on RNFL Thickness Map images, the PDF files from the pre-
vious step were cropped to obtain only the RNFL Thickness
Map of the corresponding eye out of the files (see section A
in Figure 2). The cropped images were saved as JPG files.
This action was carried out for images in both classes, glau-
comatous and non-glaucomatous, until completing the final
dataset. For instance, Figure 3 shows the images of nonglau-
comatous left and right eyes, and Figure 4 shows the images
of glaucomatous left and right eyes.

Originally, 333 images were collected for left and right
eyes. However, some of them were damaged. An image was
considered as damaged when it had black spots in which data
was missing. Therefore, to train the networks with the Mobi-
leNet and Inception V3 algorithms in the best way possible,
the damaged parts of the image were cut out when it was
possible, as shown in Figure 5. In the cases where the black

Fig. 3. Non-glavcomatous left and right eyes, respectively

¥t

Fig. 4. Glavcomatous left and right eyes, respectively

spots occupied a large area of the image, as in Figure 6, the
image was cut off from the training and testing datasets.

After cutting out and cutting off images, there were diffe-
rent amounts of images per class in both eyes. Specifically,
there were 52 images of glaucomatous left eyes, 50 images
of non-glaucomatous left eyes, 51 images of glaucomatous
right eyes, and 57 images of non-glaucomatous right eyes. In
order to have the same number of images per class, images
were removed from the classes with more images to balance
the number of images per class. Therefore, in the training
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Llbod

Fig. 3. Non-glavcomatous left and right eyes, respectively

¥t

Fig. 4. Glavcomatous left and right eyes, respectively

stage for each eye, 50 images were used per class. The clas-
sification was made in the prediction stage, using 15 images
per class, different than the ones used in the training stage,
to avoid overfitting (see Table 2 and Table 3). In total, 260
images were used in the experiments.

bl ¥l

Fig. 5. Cut out image

Fig. 6. Cut off image from the dataset

7) Modeling: Four models were generated, two trained
with MobileNet, one for the left eye and one for the right
eye, and another two trained with Inception V3. For instan-
ce, the command to retrain the model for left-eye images with
MobileNet is presented in Listing 1.

In the first line, the retrain script from the TensorFlow Hub
repository3 is executed. This script retrains the top layer in
the model, which is capable of recognizing specific classes of
images. Lines 2 and 3 create the directory where the bottle-

python -m scripts.retrain \
—-bottleneck_dir-mobile_v1_100_224/08/tf_files/bottle
necks \

1
2

3

4 --how_many_training_stops=500 \

5 --model_dir-mobile_v1_100_224/tf_files/models/ \

6 --summaries_dir-mobile_v1_100_224/08/tf_files/train

7 ing_summaries \

8 output_graph-mobile_vl_100_224/05/tf_files/retrain
9 ed_graph.pb \

10 output_labels-mobile vl _100_224/05/tf_files/retrain
11 ed_ labels.txt

12 architecture="mobilenet_1.0_224" \

13 image_dir-1Dv/0S/Train

Listing 1. Command (o retrain the MobileNet algorithm with lefi-cye images

neck files are going to be stored. A bottleneck is the layer just
before the final output layer that actually does the classifica-
tion. Every image is reused multiple times during the training
stage. Therefore, calculation operations in the layers behind
the bottleneck for each image take a significant amount of
time. Since these lower layers of the network are not modi-
fied, their outputs can be cached and reused. These outputs
are the “bottleneck files” that are stored. In case of rerunning
the script, these files are reused.

In line 4 the number of training steps is declared. Line 5
indicates the directory where the model is stored. In lines 6
and 7 the training summaries directory is created. This di-
rectory stores the training progress reports that Tensorboard
is monitoring. Lines 8-11 indicate the directories where the
output labels and graphs are going to be sent to. Line 12 in-
dicates the architecture to be used. In the case of MobileNet,
the 1mobilenet,,0,24) parameter is used. In the case of Incep-
tion V3, the parameter 1inception,3] is used . Finally, line 13
indicates the directory of the training dataset.

In lines 2, 5, 6, 8, and 10, the directory 1mobile, 100,24
changes to “inceptionv3” when using Inception V3. In lines
2,6, 8, 10, and 13, the directory “OS” changes to “OD” when
training with right-eye images.

B. Results

This section covers the evaluation stage of the methodo-
logy followed in this research work. Specifically, it shows the
results obtained with the MobileNet and Inception V3 mo-
dels. The MobileNet and Inception V3 models were retrai-
ned using Python v3.6.9, TensorFlow v1.14.0, and Anacon-
da v2019.07. A personal laptop with an Intel(R) Core(TM)
i56200U CPU and 12 GB RAM was used for the training
and evaluationofthemodels.Both modelswereretrainedusing
the retrain script with the training images dataset. For the
testing stage, 15 different images for each eye (15 images for
the right eye and 15 for the left eye) were used per class.
Table 4 and 5 show the confusion matrices of both eyes with
MobileNet. Table 6 and 7 show the confusion matrices of
both eyes with Inception V3, both having equal results.

Tables 8-11 show the evaluation results of the classifica-
tion model in terms of precision, recall, and F1 score.



TABLE 1V
BINARY-CLASS CONFUSION MATRIX OF MOBILENET (LEFT EYE)

Prediction .
Glaucomatous Non-glaucomatous
Actual
Glaucomatous 12 3
Non-glaucomatous | 14

TABLE V
BINARY-CLASS CONFUSION MATRIX OF MOBILENET (RIGHT EYE)

Prediction .
Glaucomatous Non-glaucomatous
Actual
Glaucomatous 14 1
Non-glaucomatous 2 13

TABLE VI
BINARY-CLASS CONFUSION MATRIX OF INCEPTION V3 (LEFT EYE)

Prediction .
Glaucomatous Non-glauvcomatous
Actual
Glaucomatous 13 2
Non-glaucomatous | 14

TABLE VII
BINARY-CLASS CONFUSION MATRIX OF INCEPTION V3 (RIGHT EYE)

Prediction )
Glaucomatous Non-glaucomatous
Actual
Glaucomatous 13 2
Non-glaucomatous 1 14
Discussion

In the results in Tables 8-11, the MobileNet and Inception
V3 algorithms show promising results for the two classes
with images of both eyes. The Inception V3 model showed
slight better average results than the MobileNet model in the
case of classifying left eye images. In average, the evaluation
results for right eye images were the same for both models.

Conclusion and future work

In this research work, the MobileNet and Inception V3 al-
gorithms were used to create two classification models for
glaucoma detection of Latino population. Specifically, the
MobileNet and Inception V3 models were retrained for both
eyes, with a total of 200 images. For the testing stage, 60
images were used, and the average results were satisfactory
in both models. Specifically, the Inception V3 model showed
slight better average results than the MobileNet model in the
case of classifying left eye images. In average, the evaluation
results for right eye images were the same for both models.
The evaluation results of the MobileNet model for the left
eye were: accuracy: 86 %, precision: 87 %, recall: 87 %, and

TABLE VIl

RESULTS OBTAINED FROM THE EVALUATION OF MOBILENET (LEFT EYE)
Class Precision Recall F1 Score
Glaucomatous 0.82 0.93 0.87
Non-glaucomatous 0,92 0.80 0.86
Average 0.87 0.87 0.87

TABLE IX
RESULTS OBTAINED FROM THE EVALUATION OF MOBILENET (RIGHT EYE)

Class Precision Recall 1 Score
Glaucomatous 0.93 0.87 0.90
Non-glaucomatous 0.88 0.93 0.90
Average 0.90 0.90 0.90

TABLE X
RESULTS OBTAINED FROM THE EVALUATION OF INCEPTION V3 (LEFT
EYE)

Class Precision Recall F1 Score
Glaucomatous 0.88 093 0.90
Non-glaucomatous 0.93 0.87 0.90
Average 0.90 0.9 0,90

TABLE XI
RESULTS OBTAINED FROM THE EVALUATION OF INCEPTION V3 (RIGHT
EYE)

Class Precision Recall F1 Score
slaucomatous 0,48 0.93 0,90
Non-glaucomatous 093 0.87 0.90
Average 0.90 0.90 0.90

F1 score: 87 %. The evaluation results of the MobileNet mo-
del for the right eye were: accuracy: 90 %, precision: 90 %,
recall: 90 %, and F1 score: 90 %. The evaluation results of
the Inception V3 model for the left eye were: accuracy: 90 %,
precision: 90 %, recall: 90 %, and F1 score: 90 %. The eva-
luation results of the Inception V3 model for the right eye
were: accuracy: 90 %, precision: 90 %, recall: 90 %, and F1
score: 90 %. As future work, we expect to extend this re-
search work with a larger dataset of glaucoma and non glau-
coma OCT images of Latino patients, obtained from different
eye care centers in Mexico. This model will be deployed in
a clinical environment. Also, we expect to improve it based
on the feedback from ophthalmologists who use it to make
classifications.
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