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Igneous rocks form from cooling and solidication of molten rock, either from magma within the
Earth’s crust (plutonic rocks), or from lava extruded on to the Earth’s surface in the atmosphere
or underwater (volcanic rocks). The classification of igneous rocks can be done using data from
X-ray uorescence (XRF), neutron activation analysis (INAA and RNAA), inductively coupled
plasma emission spectrometry (ICP), atomic absorption spectrophotometry (AAS), and mass
spectrometry. However, these approaches tend to be expensive and difficult to understand and
apply. In this study, several models for the classication of plutonic rocks were created with a
convolutional neural network developed with TensorFlow. Specifically, several combinations
of gabbro, granite, and granodiorite image samples were used in the experiments, each class
with 97 images. The best result was obtained with images of granite and granodiorite rocks.
The evaluation of this model was satisfactory, with an accuracy value of 73.03 % and average
precision, recall, and F1 score values of 86 %. An Android mobile application uses this classi-
fication model to return the class of a rock image. This mobile application offers the exibility

to carry out rock classications in the eld in real time.
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Introduction
Background

Data science can be dened as the study of the generaliza-
ble extraction of knowledge from data. It seeks actionable
and consistent patterns for predictive uses [1]. It calls for
multidisciplinary approaches that incorporate theories and
methods from many fields including mathematics, statistics,
pattern recognition, knowledge engineering, machine lear-
ning, high performance computing, etc. Data science can be
applied to big data, a term that can be used to describe data-
sets so large and complex that they become difficult to work
with using standard techniques [2].

Machine learning is a subeld of artificial intelligence whe-
re computers learn without being explicitly programmed.
With traditional statistical methods, the model is specified
prior to working with the data. In contrast, with machine
learning, the model is defined by applying methods or algo-
rithms to the data (i.e., data-adaptive) and few assumptions
are made about the data distribution. Data is becoming in-
creasingly unstructured (e.g. images), so new approaches are
needed to analyze it. Early work in classifying geochemical
data was done by Pearce et al [3], who were able to discri-
minate between granitic-type rocks from different plate tec-
tonic environments just by using pairs of trace elements dis-
played on bivariate plots. However, using only two or three

elements to group data is not enough in multivariate con-
texts. Therefore, there is a need to extend traditional approa-
ches in geochemistry to solve the rising complexity of data
in the field. Machine learning, which is a key element of data
science, can be used to nd useful patterns in data. In the era
of big data, its achievements have benefited corporations and
ordinary people,but its application to geochemistry research
has not been fully appreciated. According to Jiao et al.[4],
“in the era of big data, the geology encountered an unprece-
dented crisis.” Therefore, earth data scientists are in demand
[5]. Earth analytics, or Earth data science, uses data science
techniques to study Earth processes and solve environmental
issues. This rapidly growing field requires a mastery of both
Earth science and data science, a combination highly sought
after in academia and industry. This interest is evidenced in
new postdoctoral fellowships and in certificate programs.

International conferences such as Goldschmidt and the
American Geophysical Union (AGU) have had sessions on
geochemistry data science.

Machine learning applied to geological/geochemical da-
ta has two categories: 1) classification — supervised learning
([61,[71,[81, [9],[101,[11],[12]) and 2) clustering — unsupervi-
sed learning ([13],[14],[15]).

Machine learning has been satisfactorily applied to analy-
ze: potential earthquakes [16], volcanic eruptions [17], lands-
lide susceptibility by spatial modeling [18], seaoor mud vol-
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cano classification [19], tsunami deposit discrimination [20],
acid mine drainage prediction [21], and mineral prospects
[22]. However, there is a small number of research works
that use computer vision for rock classification. Moreover,
those approaches do not propose a mobile solution to carry
the classification in the field [23][24],[25],[26].

Problema statement

Although the classification of igneous rocks can be do-
ne using data from X-ray-ray fluorescence (XRF), neu-
tron activation analysis (INAA and RNAA), inductively
coupled plasma emission spectrometry (ICP), atomic absor-
ption spectrophotometry (AAS), and mass spectrometry, the-
se methods tend to be expensive and complicated. Moreover,
there are no mobile applications for the automatic classifica-
tion of igneous rocks that could be used in the field.

Justification

There are not mobile applications that use deep learning
for the automatic classification of plutonic rocks. Such solu-
tion could be an alternative to expensive traditional methods
for rock classification, Also, a mobile application for rock
classification offers the flexibility to carry out the classifica-
tion of rocks in the field in real time.

Objectives

» Train several classification models with a convolutio-
nal neural network created on Tensorow using combi-
nations of images of granite, granodiorite, and gabbro
samples.

» Evaluate the classification models in terms of accu-
racy, precision, recall, and F1 score.

= Create a mobile application in Android for the auto-
matic classification of plutonic rocks using the deep
learning model with the best evaluation results.

Hypothesis

By using deep learning it is possible to classify the images
of the following types of plutonic rocks: granite, granodiori-
te, and gabbro.

Theoretical foundation

Underpinnings of our Approach

1) Plutonick Rocks: Plutonic rocks are solidified inside the
earth’s crust, usually from magma, although they may have
been formed by a different mechanism. Plutonic rocks are

generally coarse-grained, but not all coarse-grained rocks are
plutonic.[27]

2) Granite: Granite rocks are plutonic rocks with a gra-
nular texture, composed of similar amounts of quartz, po-
tassium feldspar, and plagioclase as essential minerals, and
smaller amounts of one or more minerals, such as biotite,
muscovite or hornblende.[27]

3) Granodiorite: Granodiorite is a plutonic rock of the
granitoid family, characterized by quartz because plagioclase
constitutes more than 2/3 of the total feldspars. Generally, to-
gether with granite, it is the most abundant rock of the great
batholiths. Its volcanic equivalent is dacite. [27] Granodiori-
te is similar to granite, but with less potassium feldspar and
more plagioclase.

4) Gabbro: Gabbro is a plutonic rock composed mainly
of calcium plagioclase and clinopyroxene or orthopiroxene,
with or without olivine or amphibole. It is the intrusive equi-
valent of basalt. It is distinguished from diorite by the na-
ture of plagioclase, which is higher in calcium than in so-
dium.[27]

5) Machine Learning: Machine learning is the science and
art of computer programs for learning from data. It can be
defined as computational methods that use experience to im-
prove performance or make accurate predictions. Experience
can refer to past data that are used by the learner. The quality
and size of the data are very important to the accuracy of the
predictions 28],[29].

6) Deep Learning: Deep learning is a form of machine
learning that enables computers to learn from experience and
understand the world in terms of a hierarchy of concepts.
Because the computer gathers knowledge from experience,
there is no need for a human computer operator formally to
specify all of the knowledge needed by the computer. The
hierarchy of concepts allows the computer to learn compli-
cated concepts by building them out of simpler ones [30].

7) Convolutional Neural Networks: A convolutional neu-
ronal network (CNN) is a deep learning algorithm that can
take an input image, assign importance (weights and lear-
ning biases) to several aspects/objects in the image, and be
able to differentiate one from the other. The architecture of a
CNN is analogous to the pattern of connectivity of neurons
in the human brain and was inspired by the organization of
the visual cortex. Individual neurons respond to stimuli only
in a restricted region of the visual field known as the recep-
tive field. A collection of these fields are superimposed to
cover the entire visual area. CNNs are commonly used for
the automatic classification of images.

8) Android Studio: Android Studio' is the official integra-
ted development environment (IDE) for Android application
development. It is based on IntelliJ IDEA. In addition to In-
telliJ’s powerful code editor and developer tools, Android
Studio offers the following features that increase producti-
vity when developing Android applications: a flexible com-



pilation system; a fast feature-packed emulator; a unified en-
vironment where programmers can develop for all Android
devices; code insertions and resource changes can be done
without restarting the application; GitHub integration; a va-
riety of frameworks and testing tools; tools to identify perfor-
mance, usability, and version compatibility issues; integrated
support for the Google Cloud Platform, making it easy to in-
tegrate with Google Cloud Messaging and App Engine.

9) TensorFlow: TensorFlow 2 is an open source software
library for distributed numerical computation using data flow
graphs. TensorFlow was created by Google and is compatible
with many of its machine learning applications. TensorFlow,
as the name implies, is a framework to dene and execute cal-
culations involving tensors. A tensor is a generalization of
vectors and matrices to potentially higher dimensions.

Internally, TensorFlow represents tensors as n-
dimensional arrays of base datatypes. Each element in
the tensor has the same type of data, and the type of
data is always known. The shape (that is, the number of
dimensions it has and the size of each dimension) can only
be partially known. The range of a tensor is its number
of dimensions. Keras3 is a high-level neural network API,
written in Python. Keras can run on TensorFlow, CNTK or
Theano. Keras allows easy and fast prototyping (through
ease of use, modularity, and extensibility). Keras supports
both convolutional and recurrent networks, as well as
combinations of the two. It runs on both CPU and GPU.

Keras’ central data structure is a model, which is a way of
organizing layers. The simplest type of model is the sequen-
tial model, a linear stack of layers. A sequential model can be
created by passing a list of layer instances to the constructor
or by simply adding layers via the add method. The model
needs to know what input shape it should expect. For this
reason, the first layer in a Sequential model needs to receive
information about its input shape. Before training a model, it
is necessary to configure the learning process, which is done
via the compile method. This method receives three argu-
ments: an optimizer, a loss function, and a list of metrics.
Then, a Keras model is trained on Numpy arrays of input
data and labels. The model is trained with the fit function.

Related Work

Although there are mobile applications such as Geology
Rocks - Handbook of Rocks [4] or Smart Geology - Mine-
ral Guide [5], which provide information about the types of
rocks, their chemical composition, shape, and color, they do
not use computer vision for the automatic classification of
the rocks.

Computer vision has been used in geology. For instance,
in [31], a computer vision-based rock-type classification al-
gorithm is proposed for fast and reliable identication without
human intervention. A laboratory scale vision-based model
was developed using a probabilistic neural network (PNN)
where color histogram features are used as input. The color

image histogram-based features that include weighted mean,
skewness, and kurtosis features are extracted for all three co-
lor space red, green, and blue. Nine features are used as input
for the PNN classification model. The PNN model is valida-
ted using the test data set and results reveal that the proposed
vision-based model can perform satisfactorily for classifying
limestone rock-types. Overall the error of misclassification is
below 6 %.

In [23], the authors used unsupervised learning through
the implementation of K-stockings to identify rocks. It is not
mentioned how many images were used for this study. The
authors segmented the grains of the rock and pore voxels of
a three-dimensional volume of grayscale rock images of the
X-ray tomography. Overall, the accuracy was greatly affec-
ted by the feature vector selection scheme.

In [24], the authors measured the physical properties of
819 samples from a Canadian deposit. Specifically, the fo-
llowing classification algorithms were used to detect hydrot-
hermal alteration and petrophysical properties of minerals:
Linear Discriminant Analysis (LDA), K-Nearest Neighbors
(KNN), Random Forests (RF), Ndive Bayes (NB), and Sup-
port Vector Machines (SVM). The authors tried to predict the
type of rock and the alteration of physical properties. Ove-
rall, the accuracy of each model varied between 77.6 % and
78.7 %.

In [25], the authors present an image segmentation system
specifically aimed at estimating the size of petroleum sand
ore. This system learns the spectral and shape features of the
training images of petroleum sand ore samples to improve
image quality, followed by segmentation of mineral image
shapes.The proposed segmentation achieved superior accu-
racy over current cutting-edge systems.

In [26], the authors developed a mineral quality monito-
ring system based on image analysis. This study was conduc-
ted in a limestone mine located in India. The samples were
collected based on a stratified random sampling method and
the images of those samples were taken in a simulated envi-
ronment in the laboratory. The preprocessing of the images
and the segmentation were carried out using different seg-
mentation methods to extract morphological, color, and tex-
ture characteristics. A total of 189 features were extracted.
The authors used an articial neural network model for pre-
dicting the grade of the mineral. The proposed approach can
be used for monitoring the grade of ore at the mine level in
a controlled environment. No details are provided about the
accuracy of this approach.

Results
Methodology

This project was broken down in the following steps: 1)
Organize the images: The original image dataset was provi-
ded by a group of geologists from Loma Linda University,
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California. It contained 8 classes of plutonic rocks, namely,
diorite, gabbro, granite, granodiorite, monzodiorite, monzo-
granite, monzonite, and tonalite with a total of 231 images.
Table I shows the number of images per class.

Out of the 8 classes, we decided to use the images of gab-
bro, granite, and granodiorite because they were the most dif-
ferent in sight and also because some classses, such as mon-
zogranite and monzonite have very few samples in them. In
order to get a higher number of images for training, it was ne-
cessary to increase the number of images for gabbro and gra-
nite. This increase was carried out by cutting out the original
images in these two classes into several parts. Each part beca-
me a new image. Also, some images in these two classes we-
re rotated 90 and 180 degrees, and some others were flipped.
As a result, we obtained 97 images patches for each class.
The images were distributed as follows: from each class, 45
images were used for training and 45 images for validation.
Seven images were chosen randomly per class to evaluate the
model. Table II shows an example of the images used in the
experiments. Table III shows the distribution of the images
by class. The images used in the experiments are available
online®.

2) Create the topology of the deep neural network: In
this step, a sequential topology was created with Tensorow
using the Keras® library. Specifically, the models with dif-
ferent combinations of images were created and evaluated
using TensorFlow 7 version 1.13.1 and Keras8 version 1.1.0
for CPU. Listing 1 presents the code for the construction of
the the topology of the artificial neural network. Table IV
shows the parameters of the topology. Appendix A shows
the complete code to construct the topology. The hyper pa-
rameter values are as follows: 50 epochs, batch size of 32,
1,000 steps per epoch, 200 validation steps, and learning rate
of 0.0005. The code is also available online®.

This topology is composed of eight layers. The rst layer
in lines 2-3 applies the convolution operation. In this layer,
32 33 filters are applied to the input signals. The output is a
9898 pixels image. The next layer in line 4 is max pooling.
This combination is common in a CNN. In the max pooling

layer, the signals of outputs (map of features) obtained from
the convolution layer are reduced in terms of their spatial
dimension. The pool size is 22. Next, there is another convo-
lution of 64 additional 22 lIters in lines 5-6. The convolutio-
nal layer extracts features of higher abstraction level, such as
borders and lines from the reduced feature maps in the pre-
vious max pooling layer. Next, there is another max pooling
layer in line 7 with a pool size of 22. This layer allows to
keep decreasing the spatial dimension of the features while
keeping the most important ones. Then comes a flatten layer
in line 8. In this stage, the images are flattened in a single
dimension. The next layer in line 9 is the dense layer, which
has 64 fully-connected neurons, followed by a dropout layer
in line 10 that controls the activation of the neurons of the
previous layer to avoid overfitting of the network and impro-
ve the adaptation of the network to new information. Finally,
there is a dense layer in line 11 with only 2 neurons. This is
because each one of these neurons represents a class to be
recognized (granite and granodiorite).

3) Evaluate the classification models: In this step, different
classification models were created with the combination of
the three classes selected in the previous step, namely gab-
bro, granite, and granodiorite. The following metrics were
used in the evaluation. These metrics were implemented with
Scikitlearn10 version 0.22.1:

The accuracy metric represents the fraction of predictions
the model got right, and is formally dened as:

The precision metric represents the ratio of the real po-
sitives among the examples that are expected to be positive
in relation to the total quantity of true positives plus false
positives. The precision metric is dened as:

where TP is the number of true positives and FP the num-
ber of false positives. The precision is intuitively the ability
of the classifier not to label as positive a sample that is nega-
tive.

The recall metric is dened as:

where TP is the number of true positives and FN the num-
ber of false negatives. The recall is intuitively the ability of
the classifier to find all the positive samples. The F1 score is
the weighted harmonic mean of the precision and recall. It is
defined as:



The results of the models created with the different com-

binations of rock images are as follows:

= Combination 1 - Gabbro, Granite, and Granodiorite:
The accuracy value in this model is 60 %, which is
low. Table V shows the precision, recall, and F1 score
values for this model.Inaverage,the resultsareverylow.
Therefore, this model was not used for deployment.

= Combination 2 - Gabbro and Granite: Table VI pre-
sents the evaluation results for this model. Although
the results are better than in the case with the three
classes, the results are still low in terms of precision,
recall, and F1 score. The accuracy value in this model
is 57.45 %, which is also low. In fact, the results are
close to what could be obtained merely by chance.

Combination 3 - Gabbro and Granodiorite: The accu-
racy value of 54.17 % of this model is still low. Table
VII presents the evaluation results in terms of preci-
sion, recall, and F1 score, which are also low.

Combination 4 - Granite and Granodiorite: This com-
bination offers the best results with an average accu-
racy value of 73.03 %. The levels of accuracy and loss
were measured to validate the classication model. Fi-
gures 2 and 3 present the results. These figures show
that the accuracy increases and the loss decreases as
the number of iterations increases until epoch 50 is
reached.

Also, the results were high in terms of precision, and
F1 score as presented in Table VIII.

Initially, we expected to get better results in combi-
nations 2 and 3 since in general, gabbros are much
darker than either granodiorites or granites. The low
results in these combinations could be caused because
of the small image patches (around 150-250 x 150-250

pixels) that were included in the dataset by cutting out
the original 17 gabbro images to balance the number
of instances in this class with the number of instan-
ces in the other classes. Also, it was also interesting
to see the high results in combination 4. Often, granite
and granodiorite look very similar and they grade in-
to each other; often the difference can only be exactly
determined by mineral point counting.

Outcomes

A mobile application was created for the automatic
classification of granite and granodiorite by means of
using the model created with a convolutional neural
network. The application was built on Android Stu-
dioll. In order to use de classification model, the Clas-
sifier and Tensorflow ImageClassier classes of TFMo-
bile were added to the Android Studio project. The
source code of the application'? and the installer of
the application13 are available online. TFMobile is the
API that makes it possible to use classification models
in mobile devices. The Classifier class is a generic in-
terface to interact with different recognition engines,
while the TensorowImageClassier class implements it
and creates the classifier to tag the pictures using Ten-
sorFlow.

These classes were taken from the official TensorFlow
website on GitHub for Android devices'*. Figure 4
shows the workflow of the application. The first screen
shows the instructions for taking the picture, which
are: avoid using the flash; keep the camera clean; avoid
taking pictures looking at the sun; the rock should not
be worn out; finally, the sample should be a coarse-
grained igneous rock, not metamorphic or sedimen-
tary. The trained classification model is loaded as soon
as the user clicks on the button to go to the second
screen. In the third screen, the camera is opened and
the user can take the picture. Once the picture is taken,
the camera returns the type of plutonic rock class with
the accuracy score of the classification in the fourth
screen. Fragments of the code to load the model and
classify the image are presented in Listings 2-5. First,
Listing 2 shows the variables needed to load the model.
These variables are described below.

INPUT_is the input size of the model. In our case, the
Sequential Model topology that was used has an input
size of 224 224 pixels.

e IMAGE_and IMAGE_indicate the expected in-
put range of the neural network that is being
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used. It is the [0, 255] range in our case.

e INPUT_and OUTPUT _are the entry and exit na-
mes of the model that come from the training
script.

e MODEL_and LABEL _are the files of the model
and its labels that are inside the assets folder of
the application.

Then, Listing 3 shows the classification interface. The
condition in lines 20-31 is called to ask for permission
to open the cell phone camera to take the rock picture.
Then the classification model is loaded into memory
by means of calling the initTensorFlowAndLoadMo-
del() model. The private variables TV, TV2, iV, and
the selectPhoto button declare the visual elements that
this activity will have.

Listing 4 shows the initTensorFlow AndLoadModel()
function that loads the classification model. It uses the
TensorFlow Inference interface, which is responsible
for loading the model using the assetManager. This is
similar to a tf.Session with Tensorflow.

Finally, Listing 5 shows how the model is used to classify
an image. The code returns the classification.

Discussion

We developed an Android mobile application capable of
detecting two classes of plutonic rocks (granite and grano-
diorite). The accuracy of the model was 73.03 %. The values
for precision, recall, and F1 score were 86 %.

Conclusions

In this study, four classification models were created with
a convolutional neural network developed with TensorFlow
for the classification of plutonic rocks. Specifically, several
images of gabbro, granite, and granodiorite samples were
used in the experiments, each class having 97 images. The
best result was obtained with the classification model for gra-
nite and granodiorite. The evaluation of this model was sa-
tisfactory, with an accuracy of 73.03 % and precision, recall,
and F1 score values of 86 %. We created a mobile applica-
tion for Android devices that uses this classification model

to return the class of an image from a granite or granodiorite
rock sample.

As future work, a larger number of plutonic rock images
will be obtained for other classes. With the extended data-
set, we expect to extend our mobile application with a new
classification model able to classify rocks for a wide range
of plutonic rocks. Also, we will avoid cutting out original
pictures into several patches, such as in the case of gabbro,
in order to avoid low evaluation results in the models trained
with some image combinations.
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